

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY - CH2

SUMMER 2013 MARK SCHEME

Section A

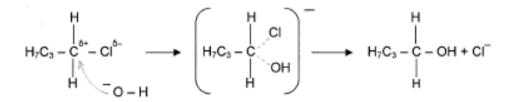
Q.1	С					[1]
Q.2	В					[1]
Q.3	(a)	Calcium chl	oride			[1]
	(b)	Magnesium	carbonate			[1]
	(c)	Sodium sulf	[1]			
Q.4		Species ssification	Cl∙ Radical	NH ₃		
		each box)	Rauicai	Nucleophile		[2]
Q.5			ng/sterilising spi es/anti-perspira	rays/deodorant soc nts	ks/	[1]

Q.6 Potassium and chlorine (1)

They have the largest electronegativity difference (1)	[2]
--	-----

Section B

Q.7	(a)	(i)	H H H—C——C- H H	—0—н							[1]
		(ii)	Nickel / plati	num / palladiu	m						[1]
		(iii)	Potassium / in ethanol ar	sodium hydro nd heat (1)	xide (1)						[2]
		(iv)	Elimination								[1]
	(b)	(i)	H H	CH ₃ -C H							[1]
		(ii)		ene) unit = 42 nits = <u>1.05 × 1</u> 42		000	(1)				[2]
	(c)	(i)	Percentage	hydrogen = 4.	6% (1)						
			C <u>22.0</u> 12	H <u>4.6</u> 1.01	Br <u>73.4</u> 79.9	(1)					
			1.83	4.55	0.92						
			2	5	1						
			Formula = C	₂H₅Br (1)							[3]
		(ii)	M _r of compo	und / number	of atoms	s of a	ny elen	nent in c	compound	ł	[1]


Total [12]

Q.8 (a) e.g. damages liver/ damages pancreas/causes cancer/causes skin disorders/ short-term effects (1)

e.g. more traffic accidents/violent behaviour/criminal behaviour (1) [2]

PMT

(b) (i) Nucleophilic substitution / hydrolysis (1)

Reactants: Polarisation curly arrow (Incorrect sta	Intermediate (1) (1) (accept curly arrow to show (1) C – CI breaking instead of intermediate) arting material or product maximum 2 marks from 3 for mechanism)	[4]
(ii)	Peak at 650–800 cm ⁻¹ due to C – Cl bond will be gone (1) Peak at 2500–3500 cm ⁻¹ due to O – H bond / 1000–1300 cm ⁻¹ due to C – O bond will be present (1)	[2]
(c) (i)	ОН	[1]
(ii)	Structural / positional / chain	[1]
(iii)	Colour change from orange to green	[1]
(iv)	Concentrated sulfuric acid / aluminium oxide (1) $CH_3CH_2CH_2CH_2OH \longrightarrow CH_3CH_2CHCH_2 + H_2O$ (1)	[2]
(d) (i)	C – F bond stronger than C – Cl bond (1) C – Cl bond breaks (in stratosphere) forming Cl● which reacts with ozone (1)	[2]
(ii)	Some CFCs still being used / CFCs take a very long time to reach the ozone layer / other substances deplete the ozone layer	[1]
	Total	[16]

[1]

Q.9	(a)	A mixture of (many) hydrocarbons / alkanes
	4.5	

- (b) $C_4H_{10} + 6\frac{1}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$ [1]
- (c) $109\frac{1}{2}^{\circ}$ [1]
- (d) H_2O has 2 bonding and 2 lone pair of electrons (1)

 CH_4 has 4 bonding pairs only (1)

Repulsion between lone pairs and bond pairs is greater than between bond pairs and bond pairs (1) [3]

QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate QWC [1]

- (e) (i) Butane is higher because it has more van der Waals' forces between molecules [1]
 - (ii) Regular array of metal ions surrounded by a 'sea' of delocalised valence electrons (1)

Strong attraction between the positive ions and the delocalised electrons (1) (Can be obtained from labelled diagrams)

Malleable because when a force is applied the layer of metal ions slide over each other forming a new shape (1)

Conduct electricity since under a potential difference the delocalised electrons flow / the delocalised electrons flow towards the positive potential

(1) **[4]**

QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning QWC [1]

Total [13]

Q.10	(a)	(i)	Chlorine – gas Iodine – solid	[1]		
		(ii)	Chlorine – brown/orange solution (1) lodine – no change / no reaction (1) $Cl_2 + 2KBr \longrightarrow Br_2 + 2KCl$ (1) (Accept ionic equation)	[3]		
	(b)	Oxygen loses electrons therefore oxidised / oxidation state changes from -2 to 0 therefore is oxidised (1)				
			ine gains electrons therefore reduced / oxidation state changes from 0 to fore is reduced (1)	-1 [2]		
	(c)	(i)	Boiling temperatures increase as relative molecular mass increases / number of electrons increases / down group (1)			
			HF has a higher boiling point than expected (1)	[2]		
		(ii)	Group 7 hydrides contain more dipole-dipole forces as group descended			
			but HF contains hydrogen bonding between molecules (1)	(1)		
			Hydrogen bonds are stronger therefore HF's boiling temperature is great / need more energy to break (1)	ter [3]		
			QWC Selection of a form and style of writing appropriate to purpose and complexity of subject matter QWC			
		(iii)	HCI more polar than SiH ₄ therefore intermolecular forces are stronger / dipole greater in HCI / CI more electronegative than Si	[1]		
			Total	[13]		

© WJEC CBAC Ltd.

Q.11	(a)	(i)	$2Ca + O_2 \longrightarrow 2CaO$	[1]
		(ii)	Ca 🛬 💍 Ö	
			(1)	
			forming Ca^{2+} and O^{2-} ions (1)	[2]
	(b)	(i)	Ca(OH) ₂	[1]
		(ii)	8 – 14	[1]
	(c)	Ca ²⁺ (a	aq) + $CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$	[1]
	(d)	(i)	Magnesium disappears / gets smaller (1) Effervescence / bubbles (of hydrogen) (1) Heat given off (1) (Accept any 2 points)	[2]
		(ii)	Moles Mg = $\frac{0.503}{24.3}$ = 0.0207 (1) Moles HCl = 0.0414 (1) Volume HCl = $\frac{0.0414}{1.6}$ = 0.0259 dm ³ (1)	[3]
		(iii)	Volume H ₂ = $0.0207 \times 24 = 0.497 \text{ dm}^3$	[1]
		(iv)	Add aqueous silver nitrate (1) White precipitate forms (1)	[2]
	(e)	Less	reactive (1)	
		Electr	ons in beryllium more difficult to lose / ionisation energy is higher (1)	[2]

(Need reason to get first mark but accept less reactive as reactivity increases down group / outer electron has less shielding etc. for 1 mark)

Total [16]

PMT